A Glimpse Into Operator Theory: Part I

Robert F. Allen

George Mason University Graduate Seminar February 7, 2006

Definition

glimpse n.

- A brief, incomplete view or look.
- 2 <u>Archaic.</u> A brief flash of light.

Outline of Part I

3 Adjoints of Bounded Linear Operators

Banach and Hilbert Spaces

Definition

A normed linear space X is a vector space (over \mathbb{C}) with norm $||\cdot|| : X \to [0,\infty)$ such that

$$||x|| = 0 iff x = 0,$$

$$||x + y|| \le ||x|| + ||y||,$$

3
$$||\alpha x|| = |\alpha| ||x||.$$

For a normed linear space X, we define a metric

$$d(x,y) = ||x-y||.$$

Examples

① ℂ^{*n*}:

$$||(z_1, z_2, ..., z_n)|| = \left(\sum_{j=1}^n |z_j|^2\right)^{1/2}$$

2 $C(\mathcal{Y}) = \{f : \mathcal{Y} \to \mathbb{C} \mid f \text{ cont. and } \mathcal{Y} \text{ compact Hausdorff}\}:$

$$||f|| = \max_{y \in \mathcal{Y}} \{|f(y)|\}$$

3 $L^{p}(X, \mu)$ for positive measure μ :

$$||f||_{p} = \begin{cases} \left(\int_{X} |f|^{p} d\mu \right)^{1/p}, & (1 \le p < \infty) \\ \sup_{x \in X} \{|f(x)|\}, & (p = \infty) \end{cases}$$

Definition

Let X be a normed linear space. If X is complete in the induced metric, then X is called a **Banach space**.

Bloch Space
Let
$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$$

 $\mathcal{B} = \left\{f \text{ analytic on } \mathbb{D} : \sup_{\substack{z \in \mathbb{D} \\ \beta_f}} (1 - |z|^2) |f'(z)| < \infty\right\}.$

 $\ensuremath{\mathcal{B}}$ is a Banach space under the norm

$$||f||_{\mathcal{B}} = |f(0)| + \beta_f.$$

Definition

An inner product space X is a vector space over \mathbb{C} with a map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that (1) $\langle x, y \rangle = \overline{\langle y, x \rangle},$ (2) $\langle x, x \rangle \ge 0$ with $\langle x, x \rangle = 0$ iff x = 0,(3) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle,$ (4) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle.$

For an inner product space X, we define a norm

$$||x|| = \langle x, x \rangle^{1/2}$$

Examples

<u>_</u>

• \mathbb{C}^n : $\langle (z_1,\ldots,z_n), (w_1,\ldots,w_n) \rangle = \sum_{i=1}^n z_i \overline{w_i}$

$$\langle (z_1, z_2, \dots), (w_1, w_2, \dots) \rangle = \sum_{i=1}^{\infty} z_i \overline{w_i}$$

• $L^2(X, \mu)$ for positive measure μ :

$$\langle f,g\rangle = \int_X f\overline{g} \ d\mu$$

Definition

Let X be an inner product space. If X is complete in the induced metric, then X is called a (complex) Hilbert space.

Bergman space

$$A^2(\mathbb{D}) = L^2_a(\mathbb{D}) = \left\{ f \text{ analytic on } \mathbb{D} : \int_{\mathbb{D}} \left| f(z) \right|^2 \; rac{dA}{\pi} < \infty
ight\}.$$

 $L^2_a(\mathbb{D})$ is a closed subspace of $L^2\left(\mathbb{D}, \frac{dA}{\pi}\right)$.

Definition

For
$$f,g \in \mathfrak{H}$$
, we say $f \perp g$ if $\langle f,g \rangle = 0$. We define

$$A^{\perp} = \{ h \in \mathcal{H} : \langle h, a \rangle = 0 \; \forall a \in \mathcal{A} \}.$$

Theorem (Projection Theorem)

Let M be a closed subspace of \mathfrak{H} . Then there exists a unique pair $P : \mathfrak{H} \to M$ and $Q : \mathfrak{H} \to M^{\perp}$ such that $x = Px + Qx, \forall x \in \mathfrak{H}$. Furthermore

$$@ \forall x \in M^{\perp}, Px = 0 and Qx = x,$$

3 P and Q are linear maps,

$$||x||^2 = ||Px||^2 + ||Qx||^2$$

P and Q are called the orthogonal projections.

Bounded Linear Operators

Definition

A linear map $T : X \to Y$ between normed linear spaces is called a **bounded linear operator** if $\exists M > 0$ such that, for all $x \in X$

 $||Tx|| \leq M ||x||.$

We denote the set of such bounded linear operators by $\mathscr{B}(X, Y)$.

Proposition

If $T : X \rightarrow Y$ is a linear map between normed linear spaces, TFAE:

- T is continuous,
- **2** T is continuous at x = 0,
- T is bounded.

Proof.

Suppose T is continuous at x = 0. For $\varepsilon = 1$, there exists $\delta > 0$ such that $||Tx|| \le 1$ whenever $||x|| \le \delta$. For $v \ne 0$,

$$||Tv|| = \left| \left| \frac{||v||}{\delta} T\left(\delta \frac{v}{||v||} \right) \right| = \frac{||v||}{\delta} \left| \left| T\left(\delta \frac{v}{||v||} \right) \right| \right| \le \frac{1}{\delta} ||v||.$$

Suppose *T* is bounded. So there exists *M* such that $||Tv|| \le M ||v||$ for all $v \in \mathcal{H}$. Let $\varepsilon > 0$. Define $\delta = \frac{\varepsilon}{M}$ and suppose $||x - y|| < \delta$. We see that

$$||Tx - Ty|| = ||T(x - y)|| \le M ||x - y|| < M\delta = \varepsilon.$$

Definition

If $T: X \to Y$ is a bounded linear operator, then

$$\begin{split} |T|| &= \sup\{||Tx|| : ||x|| \le 1\}, \\ &= \sup\{||Tx|| : ||x|| = 1\}, \\ &= \sup\left\{\frac{||Tx||}{||x||} : ||x|| \ne 0\right\}, \\ &= \inf\{C : ||Tx|| \le C ||x||\}. \end{split}$$

 $\mathscr{B}(X, Y)$ is a normed linear space under $||\cdot||$, and if Y is complete then $\mathscr{B}(X, Y)$ is a Banach space.

 $\mathscr{B}(X,\mathbb{C})$ is a Banach space and $\Lambda \in \mathscr{B}(X,\mathbb{C})$ is called a **bounded** linear functional.

Orthogonal Projections

 $P: \mathcal{H} \to M$ is a linear operator on Hilbert space \mathcal{H} into a closed subspace M.

$$||Ph||^2 \le ||h||^2$$
.

So $||P|| \le 1$. If $h \in M$, then ||Ph|| = ||h||. So ||P|| = 1.

Multiplication Operators

 $M_{\varphi}(f) = \varphi f$ with symbol $\varphi \in L^{\infty}(X, \mu)$ is a linear operator from $L^{2}(X, \mu)$ to $L^{2}(X, \mu)$ for positive measure space (X, μ) .

$$\left|\left| M_{arphi}(f)
ight|
ight|^2 = \int_X \left| arphi f
ight|^2 \; d\mu \leq \left| \left| arphi
ight|
ight|_\infty^2 \left| \left| f
ight|
ight|_2^2.$$

So $||M_{\varphi}|| \leq ||\varphi||_{\infty}$.

Shift Operators on ℓ^2

The forward shift operator $S: \ell^2 \to \ell^2$ is defined as $S(x_1, x_2, ...) = (0, x_1, x_2, ...).$

$$||S(x_1, x_2, ...)|| = ||(0, x_1, x_2, ...)|| = ||(x_1, x_2, ...)||.$$

So ||S|| = 1.

The backward shift operator $S^* : \ell^2 \to \ell^2$ is defined as $S^*(x_1, x_2, ...) = (x_2, x_3, ...).$

$$||S^*(x_1, x_2, ...)|| = ||(x_2, x_3, ...)|| \le ||(x_1, x_2, ...)||.$$

So $||S^*|| \le 1$. If $x = (0, x_2, x_3, ...)$, then $||S^*x|| = ||x||$. Thus $||S^*|| = 1$.

Toeplitz Operators

$$\begin{split} & \mathcal{T}_{\varphi}: L^2_{\mathsf{a}}(\mathbb{D}) \to L^2_{\mathsf{a}}(\mathbb{D}) \text{ is a linear operator with symbol} \\ & \varphi \in L^{\infty}\left(\mathbb{D}, \frac{dA}{\pi}\right). \text{ We define } \mathcal{T}_{\varphi}(f) = \mathcal{P}M_{\varphi}(f). \end{split}$$

From the previous two operators, $||T_{\varphi}|| \leq ||\varphi||$.

Composition Operators

A composition operator is of the form $C_{\varphi}(f) = f \circ \varphi$. The first question is to determine what symbol φ makes C_{φ} a bounded linear operator.

On $L^2_a(\mathbb{D})$, define $C_{\varphi} : L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ with symbol φ an analytic self-map of \mathbb{D} by $C_{\varphi}(f) = f \circ \varphi$.

For this space, $||C_{\varphi}|| = 1$. This is not true for most spaces, and is not true for $L^2_a(\mathbb{B}_N)$, N > 1.

Adjoints of Bounded Linear Operators

Definition

Let $\mathfrak{H}, \mathfrak{K}$ be Hilbert spaces. A sesqui-linear form $u : \mathfrak{H} \times \mathfrak{K} \to \mathbb{C}$ is a mapping satisfying

$$u(\alpha h + \beta g, k) = \alpha u(h, k) + \beta u(g, k),$$

$$u(h, \alpha k + \beta \ell) = \overline{\alpha} u(h, k) + \overline{\beta} u(h, \ell).$$

We say *u* is **bounded** if $\exists M > 0$ such that $|u(h, k)| \leq M ||h|| ||k||$ for all $h \in \mathcal{H}$ and $k \in \mathcal{K}$.

Theorem

Let \mathfrak{H} and \mathfrak{K} be Hilbert spaces and $u : \mathfrak{H} \times \mathfrak{K} \to \mathbb{C}$ be a bounded sesqui-linear form. Then there exists unique $A \in \mathscr{B}(\mathfrak{H}, \mathfrak{K})$ and $B \in \mathscr{B}(\mathfrak{K}, \mathfrak{H})$ such that $u(h, k) = \langle Ah, k \rangle = \langle h, Bk \rangle$.

Definition

For $A \in \mathscr{B}(\mathcal{H}, \mathcal{K})$, the adjoint of A, denoted A^* is the unique element of $\mathscr{B}(\mathcal{K}, \mathcal{H})$ such that $\langle Ah, k \rangle = \langle h, A^*k \rangle$. A is called self-adjoint if $A = A^*$, normal if $A^*A = AA^*$, and unitary if $A^*A = AA^* = I$.

Properties of Adjoints

For $A, B \in \mathscr{B}(\mathcal{H})$: **a** $A^{**} = A$, **a** $(A+B)^* = A^* + B^*$, **b** $(\alpha A)^* = \overline{\alpha} A^*$, **c** $(AB)^* = B^*A^*$, **c** $||A|| = ||A^*|| = ||AA^*||^{1/2}$.

Orthogonal Projections

Let $P : \mathcal{H} \to \mathcal{M}$ be the orthogonal projection into a closed subspace. Then, for all $f, g \in \mathcal{H}$,

$$\langle Ph,g\rangle = \langle h,Pg\rangle$$
.

Let $f = m_1 + n_1$ and $g = m_2 + n_2$ where $m_1, m_2 \in M$ and $n_1, n_2 \in M^{\perp}$. $Pg = m_2$ and $Pf = m_1$ by uniqueness. $\langle f, Pg \rangle = \langle m_1 + n_1, m_2 \rangle = \langle m_1, m_2 \rangle = \langle m_1, m_2 + n_2 \rangle = \langle Pf, g \rangle$.

So $P = P^*$.

Multiplication Operators

For
$$M_arphi: L^2(X,\mu)
ightarrow L^2(X,\mu)$$
, we have

$$\langle M_{\varphi}f,g
angle = \int_{X} \varphi f\overline{g} \ d\mu = \int_{X} f\overline{\overline{\varphi}g} \ d\mu = \langle f,\overline{\varphi}g
angle = \langle f,M_{\overline{\varphi}}g
angle \,.$$

So $M_{arphi}^* = M_{\overline{arphi}}$ and M_{arphi} is self-adjoint iff arphi is real.

Shift Operators on ℓ^2

For
$$x = (x_1, x_2, ...), y = (y_1, y_2, ...) \in \ell^2$$

$$\langle Sx, y \rangle = \langle (0, x_1, x_2, \dots), (y_1, y_2, y_3, \dots) \rangle = \sum_{i=1}^{\infty} x_i \overline{y_{i+1}}$$
$$= \langle (x_1, x_2, \dots), (y_2, y_3, \dots) \rangle = \langle x, S^* y \rangle.$$

So $(S)^* = S^*$.

Toeplitz Operators

For T_{φ} acting on $L^2_a(\mathbb{D})$,

So $T_{\varphi}^* = T_{\overline{\varphi}}$.

Composition Operators

For C_{φ} acting on $L^2_a(\mathbb{D})$, we can write down an expression for C_{φ}^* for φ a linear fractional map;

$$\varphi(z)=\frac{az+b}{cz+d}.$$

$$C_{arphi}^{*} = M_{g} C_{\sigma} T_{\overline{h}}$$
 where

$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$$
$$g(z) = \frac{1}{(-\overline{b}z + \overline{d})^2}$$
$$h(z) = (cz + d)^2.$$

Preview of Part II

- Operator Algebras
- O Spectral Theory
- Maximal Ideal Spaces

References

- Conway, J., A Course in Functional Analysis, Springer, 1997.
- Cowen, C. & Maccluer, B., Composition Operators on Spaces of Analytic Functions, CRC-Press, 1995.
- 🔋 Duran, P. & Schuster, A., *Bergman Spaces*, AMS Press, 2004.
- Rudin, W., *Real & Complex Analysis*, McGraw-Hill, 1987.